199 research outputs found

    Multipolar Acoustic Source Reconstruction from Sparse Far-Field Data using ALOHA

    Full text link
    The reconstruction of multipolar acoustic or electromagnetic sources from their far-field signature plays a crucial role in numerous applications. Most of the existing techniques require dense multi-frequency data at the Nyquist sampling rate. The availability of a sub-sampled grid contributes to the null space of the inverse source-to-data operator, which causes significant imaging artifacts. For this purpose, additional knowledge about the source or regularization is required. In this letter, we propose a novel two-stage strategy for multipolar source reconstruction from sub-sampled sparse data that takes advantage of the sparsity of the sources in the physical domain. The data at the Nyquist sampling rate is recovered from sub-sampled data and then a conventional inversion algorithm is used to reconstruct sources. The data recovery problem is linked to a spectrum recovery problem for the signal with the \textit{finite rate of innovations} (FIR) that is solved using an annihilating filter-based structured Hankel matrix completion approach (ALOHA). For an accurate reconstruction, a Fourier inversion algorithm is used. The suitability of the approach is supported by experiments.Comment: 11 pages, 2 figure
    • …
    corecore